

Mosaicing Deep Underwater Imagery

Kuldeep Purohit^{*}, Subeesh Vasu^{*}, A.N. Rajagopalan^{*}, V Bala Naga Jyothi[†], Ramesh Raju[†]

> * Indian Institute of Technology Madras, India National Institute of Ocean Technology, Chennai

Introduction and motivation

- Given a set of deep underwater images, this framework performs two tasks: **Underwater Image Restoration** and **Depth-based Image Stitching**.
- **Challenges**: Non-uniform illumination, presence of haze, significant parallax effects across images.
- **High level idea**: Depth estimate obtained via dehazing can be employed to perform depth-aware stitching.
- Solution:
 - Channel-wise gradient prior for illumination compensation.
 - Depth-aware spatially varying homography for image alignment.

Depth-aware Stitching Algorithm

- Let $\mathbf{x} = [x \ y]^T$ and $\mathbf{x}' = [x' \ y']^T$ be the location of matching points across overlapping images I and I'.
- We use a set of spatially varying homographies to form correspondences across images. A local homography $\hat{h_*}$ at '*' is estimated as

$$\hat{h}_{*} = \arg\min_{h} \sum_{i=1}^{N} ||w_{*}^{i}a_{i}h||^{2} \quad s.t \quad ||h|| = 1$$
(8)

$$w_*^{i} = \exp\left[-\frac{||d_* - d_i||^2}{\sigma^2}\right]$$

(9)

Non-uniform Illumination correction

Figure 1: Natural image gradients

- Objective function is formed by enforcing
 - Smoothly varying bivariate polynomial prior on M

$$M(x) = \sum_{t=0}^{D} \sum_{l=0}^{t} a_{t-l,l} p^{t-l}(x) q^{l}(x)$$

• Sparsity prior on the image gradients:

$$O = \sum_{(i,j)} |\psi^{Z}(x) - \psi^{M}(x)|^{\alpha} + \sum_{t=0}^{D} \sum_{l=0}^{t} a_{t-l,l}$$

• z(x) = i(x)m(x),

solve for m

z - non-uniformly illuminated

image, m - illumination map.

• We use a MAP formulation to

image, i - uniformly illuminated

(1)

(2)

(3)

(5)

(7)

where, ψ - Gradient operator, $\alpha < 1$, $M = \log(m)$, $Z = \log(z)$

• We solve for M by minimizing O using iteratively re-weighted least squares.

 a_i - is a 2 × 9 matrix formed from the coordinates x_i and x'_i of i^{th} point correspondence, d_i - depth at i, N - total number of point correspondences.

(g) Figure 5: (a-c) Restored forms of input images. (d-f) Aligned images using the proposed local homography warps.

Results

(b) blue (a) Original Image (c) green (d) red Figure 2: Illumination map differences due to wavelength dependent scattering.

Deep Underwater Haze model

Dehazing using Red-channel DCP

 Transmission map (t) is estimated using Red-channel DCP [1] $\mathbf{t}(\mathbf{x}) = 1 - \min\left(\frac{\min_{y \in \omega}(1 - I^{\mathsf{R}}(y))}{1 - A^{\mathsf{R}}}, \frac{\min_{y \in \omega}(I^{\mathsf{G}}(y))}{A^{\mathsf{G}}}, \frac{\min_{y \in \omega}(I^{\mathsf{B}}(y))}{A^{\mathsf{B}}}\right) (6)$

(a) Figure 6: Mosaics obtained using (a) proposed method, (b) APAP [2], and (c) AutoStitch [3] respectively show superior performance of our method in overlapping regions and regions at different depths.

- Relative depth map is obtained as $D(x) = -\log(t(x))$
- Final image restoration:

$$J^{c}(x) = \frac{(I^{c}(x) - A^{c})}{\max(t(x), t_{0})} + (1 - A^{c})A^{c}$$

Figure 4: (a) Hazy image, (b) restored image, and (c) depth-map obtained.

(g) (h) (i) (j) (k) (l) Figure 7: Mosaics obtained using (a,d) proposed method, (b,e) APAP [2], and (c,f) AutoStitch [3]. (g-I) Zoomed in patches from a-f.

References

- [1] A. Galdran, D. Pardo, A. Picón, and A. Alvarez-Gila, "Automatic red-channel underwater image restoration," Journal of Visual Communication and Image Representation, vol. 26, pp. 132–145, 2015.
- [2] J. Zaragoza, T.-J. Chin, M. S. Brown, and D. Suter, "As-projective-as-possible image stitching with moving dlt," in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2013, pp. 2339-2346.
- [3] M. Brown and D. G. Lowe, "Automatic panoramic image stitching using invariant features," International journal of computer vision, vol. 74, no. 1, pp. 59–73, 2007.

The Indian Conference on Vision Graphics and Image Processing 2016, IIT Guwahati, India