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Introduction and motivation Depth-aware Stitching Algorithm
= Given a set of deep underwater images, this framework performs two tasks: « Let x = [x y]" and x’ = [x’ y']" be the location of matching points across
Underwater Image Restoration and Depth-based Image Stitching. overlapping images I and I’.
« Challenges: Non-uniform illumination, presence of haze, significant parallax » We use a set of spatially varying homographies to form correspondences
effects across images. across images. A local homography R, at ‘s is estimated as
« High level idea: Depth estimate obtained via dehazing can be employed to N .
AN : i 1112 L
perform depth-aware stitching. h, = arg mhmZ w.aihl[ s.t ] =1 (8)
- Solution: = ,
= Channel-wise gradient prior for illumination compensation. wt — exp ld. — dil (9)
» Depth-aware spatially varying homography for image alignment. ) 0”

a; - is a 2 X 9 matrix formed from the coordinates x; and x! of i'" point

Non-uniform lllumination correction correspondence, d; - depth at 1, N - total number of point correspondences.
; = z(x) = i(x)m(x),
0.04 ¢ T ' . . .
2 A z - non-uniformly illuminated
£ 0.02f ) - image, 1 - uniformly illuminated
~ “ image, m - illumination map. (i)
s 04 0 04 08 « We use a MAP formulation to -
Figure 1: Natural image gradients solve for m
« Objective function is formed by enforcing (g) (h) (i)
- Smoothly varying bivariate polynomial prior on M -igure 5: (a-c) Restored forms of input images. (d-f) Aligned images using the
A roposed local homography warps.
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= Sparsity prior on the image gradients: RESUItS
D t
O=) Wx)—PMX)I*+ ) Y aruy (2)
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where, 1\ - Gradient operator, «x < 1, M = log(m), Z = log(z)
« We solve for M by minimizing O using iteratively re-weighted least squares.

(a) Original Image (b) blue (c) green (d) red Figure 6: Mosaics obtained using (a) proposed method, (b) APAP [2], and (c) Au-

Figure 2: lllumination map differences due to wavelength dependent scattering. toStitch [3] respectively show superior performance of our method in overlapping

regions and regions at different depths.

Deep Underwater Haze model

\_ Atmospheric light

[(x) = Ealx) +Eo(x)  (3)

[=Jt+A-(1-1)

Ea(s,A) =J(A) exp(—2sa(A)) (4)

Hazy image Haze-free image Transmission Eb(s,)\) — A()\)('] - eXp(—ZS(X(}\)))
Figure 3: Atmospheric Haze model (5)

Dehazing using Red-channel DCP

« Transmission map (t) is estimated using Red-channel DCP [1]
mmyew(] _IR(U)) mmyew(IG(U)) mmyew(IB(y)) (6)

(b) (c)
(d) (e) (f)
I—AR > AG  >  AB . . . . . .
« Relative depth map is obtained as D(x) = —log(t(x)) (2) (h) (i) () (k) 0

» Final image restoration: Figure 7: Mosaics obtained using (a,d) proposed method, (b,e) APAP [2] , and
1°(x) = (I°(x) — A%) - (1 — A)AS (7) (c,f) AutoStitch [3]. (g-I) Zoomed in patches from a-f.
max (t(x), to)

t(x) = 1 — min
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