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Introduction and motivation

• Given a set of deep underwater images, this framework performs two tasks:
Underwater Image Restoration and Depth-based Image Stitching.

• Challenges: Non-uniform illumination, presence of haze, significant parallax
effects across images.

• High level idea: Depth estimate obtained via dehazing can be employed to
perform depth-aware stitching.

• Solution:
• Channel-wise gradient prior for illumination compensation.
• Depth-aware spatially varying homography for image alignment.

Non-uniform Illumination correction

Figure 1: Natural image gradients

• z(x) = i(x)m(x),
z - non-uniformly illuminated
image, i - uniformly illuminated
image, m - illumination map.

• We use a MAP formulation to
solve for m

• Objective function is formed by enforcing
• Smoothly varying bivariate polynomial prior on M

M(x) =
D∑
t=0

t∑
l=0

at−l,lp
t−l(x)ql(x) (1)

• Sparsity prior on the image gradients:

O =
∑
(i,j)

|ψZ(x) −ψM(x)|α +
D∑
t=0

t∑
l=0

at−l,l (2)

where, ψ - Gradient operator, α < 1, M = log(m), Z = log(z)

• We solve for M by minimizing O using iteratively re-weighted least squares.
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Figure 2: Illumination map differences due to wavelength dependent scattering.

Deep Underwater Haze model

Figure 3: Atmospheric Haze model

I(x) = Ed(x) + Eb(x) (3)

Ed(s, λ) = J(λ) exp(−2sα(λ)) (4)

Eb(s, λ) = A(λ)(1− exp(−2sα(λ)))
(5)

Dehazing using Red-channel DCP

• Transmission map (t) is estimated using Red-channel DCP [1]

t(x) = 1 − min

miny∈ω(1− IR(y))

1−AR
,
miny∈ω(IG(y))

AG
,
miny∈ω(IB(y))

AB

 (6)

• Relative depth map is obtained as D(x) = − log(t(x))
• Final image restoration:

Jc(x) =
(Ic(x) −Ac)

max(t(x), t0)
+ (1−Ac)Ac (7)
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Figure 4: (a) Hazy image, (b) restored image, and (c) depth-map obtained.

Depth-aware Stitching Algorithm

• Let x = [x y]T and x ′ = [x ′ y ′]T be the location of matching points across
overlapping images I and I ′.

• We use a set of spatially varying homographies to form correspondences
across images. A local homography ĥ∗ at ‘∗’ is estimated as

ĥ∗ = arg min
h

N∑
i=1

||wi∗aih||
2 s.t ||h|| = 1 (8)

wi∗ = exp
 −

||d∗ − di||
2

σ2

 (9)

ai - is a 2× 9 matrix formed from the coordinates xi and x ′i of ith point
correspondence, di - depth at i, N - total number of point correspondences.
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Figure 5: (a-c) Restored forms of input images. (d-f) Aligned images using the
proposed local homography warps.

Results
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Figure 6: Mosaics obtained using (a) proposed method, (b) APAP [2], and (c) Au-
toStitch [3] respectively show superior performance of our method in overlapping
regions and regions at different depths.
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Figure 7: Mosaics obtained using (a,d) proposed method, (b,e) APAP [2] , and
(c,f) AutoStitch [3]. (g-l) Zoomed in patches from a-f.
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