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Introduction and motivation

• Given a single image of a static 3D scene, this work solves two tasks: a
Exposing Image Forgery and a Depth-based Scene Segmentation by
recovering camera motion that occurred during exposure.

• Necessary, since it is not possible to detect using naked eye. Previous
techniques could not handle 3D scenes containing motion blur.

• High level idea: Scene Depth, camera trajectory and motion-blur kernels
are inter-related.

• Challenge: Knowledge of one is required to estimate the other.
• Solution: Discovered a consistency between horizontal and vertical

projections of spatially-varying blur kernels within an image.

Blurred Image Kernels Typical spatial variations

Blurring Model

• Pixel correspondences x and xλ at depth Z, after a transformation [φλ, Tλ]
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• If wi denotes the fraction of time camera spent in position i, motion blurred
image B can be derived from focussed image I as
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N∑
i=1
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Φi,Ti

(x)) (2)

• Similarly, PSF at x= (x, y) can be derived from a single point:

p(x, y) =
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i=1

wiδ(P
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(x, y)) (3)

• In matrix form, it is equivalent to p(x,y) =M(x,y)WD

Consistency of hlength and vlength
• Assumption Small angle of rotation φ.
• If we pick any two points: xi and xj on a PSF, the difference in their spatial

locations can be expressed in terms of the PSF’s pixel coordinate x and y:
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(a) Vertical-lengths vs rows (b) Horizontal-lengths vs columns
Figure 1: We can see that values ∆xlij and ∆ylij turn out to be constant for all the
PSFs lying on same column index y and same row index x, respectively.

Camera Trajectory Estimation

Figure 2: Camera Trajectory.

• Camera Trajectory estimation
from local PSFs. Algorithm: [3].

pset =MsetWD (6)

• Minimize with sparsity constraint.

‖ pset−MsetWD ‖2 +c ‖ WD ‖1
(7)

Matching PSFs at various depths
Using depth and camera trajectory, we generate all possible PSFs at location x.
If the pixel x was actually situated at a different scene depth Di , the PSF would
be modified as follows

pDi(x, a) =
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λ=1

wλδ(a − (P
φλ, T

λ

kiD

(x) − x))dτ (8)

Low cross-correlation between actual PSF and estimated PSFs → Region Spliced!

Results

• Finally, we utilize natural image texture segmentation [Mobahi, IJCV 2011]
of the input image to obtain meaningful region boundaries.

(a) (b) (c) (d) (e)
Table 1: Intermediate results after each step (a) Input spliced image (b) PSF
grouping (all white pixels belong to single depth layer) (c) Patch-wise inconsis-
tency between blur kernels (d) Texture based segmentation of the input image
(e) Final result showing localized spliced region in red

(a) Real Image 1 (b) Result using [1] (c) PSF Grouping

(d) Ground Truth (e) Result using [2] (f) Proposed Method

(g) Real Image 2 (h) Result using [1] (i) PSF Grouping

(j) Ground Truth (k) Result using [2] (l) Proposed Method
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