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ABSTRACT
In practice, images can contain different amounts of noise for differ-
ent color channels, which is not acknowledged by existing super-
resolution approaches. In this paper, we propose to super-resolve
noisy color images by considering the color channels jointly. Noise
statistics are blindly estimated from the input low-resolution image
and are used to assign different weights to different color channels
in the data cost. Implicit low-rank structure of visual data is en-
forced via nuclear norm minimization in association with adaptive
weights, which is added as a regularization term to the cost. Ad-
ditionally, multi-scale details of the image are added to the model
through another regularization term that involves projection onto
PCA basis, which is constructed using similar patches extracted
across different scales of the input image. The results demonstrate
the super-resolving capability of the approach in real scenarios.
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1 INTRODUCTION
Imaging systems are susceptible to noise in different conditions.
Low light imaging requires higher analog gain (ISO value) of a
camera, responsible for noise inclusion in the imaged scene [35].
Now-a-days, majority of the images are captured by smartphone
cameras as compared to the point-and-shoot and DSLR cameras.
However, the ease of photography with smartphone often comes
with the cost of higher levels of noise owing to smaller size of
sensors [1]. Further, the captured images can be lower in resolution,
which may not fulfill the requirement of different HD applications.
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Thus, it becomes necessary to recover a noise less high resolution
(HR) image from the captured noisy low resolution (LR) image.

The LR image formation process can be represented mathemati-
cally as

y = DHx + n, (1)

where y ∈ ℜN is the LR observation, which is generated from the
blurred (by H ∈ ℜM×M matrix) and decimated (by D ∈ ℜN×M

matrix) version of the HR scene x ∈ ℜM with an additive noise
n ∈ ℜN (M > N ). This mathematical model is devised from the
imaging pipeline, where decimation happens due to limited size of
the sensors [33]. The objective of super resolution (SR) is to achieve
an estimation of x from y, and is an ill-posed one as the number of
unknowns (M) exceeds the number of equations (N ). Further, the
presence of n increases the perplexity of the problem.

The ill-posed objective can be partially accomplished using ex-
isting super resolution (SR) techniques [9, 10, 29, 40, 45]. As the
high frequency (HF) information often gets attenuated or degraded
in the imaging process, the SR approaches involve incorporating
high frequency information. This is generally imported either from
sub-pixel shifted multiple LR target images or from example images
with HF content. Further, the ill-posed nature is often subjugated
by prior information such as total-variation, non-local similarity,
sparsity, etc. [9, 27, 29, 31]. Absence of example image database or
multiple LR images of the target scene with sub-pixel shift criteria
can make these kinds of SR approaches paralyzed. Such scenario
can be addressed by utilizing the intra/inter-scale patch similar-
ity [11, 25, 27, 39, 42, 44]. In the inverse process, presence of noise
often plays as a malefactor. Only a few approaches of SR are re-
ported in the literature that works in noisy situation [27, 28, 39].
Furthermore, unknown statistics of noise can make the restoration
more difficult [27, 28].

The existing approaches consider only the luminance compo-
nent for SR by neglecting the color information [9, 27, 28, 41, 47].
However, in real scenario, noise can be present in different amounts
in different color channels [15, 17, 23, 32, 43]. This is because differ-
ent channels have different ISO sensitivities. Further, the relative
sensitivities vary with different WB settings. Thus, super-resolving
the luminance component may not be able to handle the channel
varying noise. One strategy could be to apply SR algorithms sepa-
rately on each of the color channels. However, distinct processing
of each color channel disregards the correlation among channels.

In this paper, we propose to super-resolve a real noisy color
image by considering the color channels jointly to explore the cor-
relation among the color channels. Further, different weights are
assigned to different color channels in the data cost in order to
address the channel varying noise. The weights are estimated us-
ing the noise statistics from each channel. The low-rank property
of clean data is approximated by incorporating weighted nuclear
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norm. Though, the nuclear norm minimization strategy has been
employed in SR by the work [28], it minimizes the nuclear norm
uniformly without considering the significance of different singular
values. Further, the approach [28] super-resolves the luminance
component only. Whereas, we consider the significance of different
singular values by adaptively weighting them, as weighted nuclear
norm minimization can restore an image better than uniform min-
imization [12]. Moreover, the spectral correlation is utilized by
considering all the color channels jointly with adaptive weights.
Multi-scale image details are embraced in the formulation by aug-
menting another regularization term that involves projection onto
PCA basis, learned from inter-scale similar RGB patches.

Here our main assumption is that the noise of real color image
in standard RGB (sRGB) space can be approximated by the multi-
variate Gaussian model, as demonstrated in [32]. Other noise such
as Poisson may not be well suppressed by our approach, however
presence of other additive noise can be adequately addressed.

Rest of the paper is sequenced as follows: Section 2 discusses
some of the related works, and highlights the contributions. The
noise statistics are analyzed for real color images in Section 3, where
the proposed approach of weighted data cost and nuclear norm
minimization is elaborated along with PCA based constraint. The
approach is evaluated for real noisy color images using standard
datasets in Section 4. Finally, the conclusion is drawn in Section 5.

2 RELATEDWORKS
The advent of SR techniques was started with multiple sub-pixel
shifted LR images of the scene [33]. Different sub-pixel shifted
images are assumed to provide different view points of the same
scene. Hence, combining different view points can complement
each other to produce an HR image [40]. Providing enough number
of images, the under-determined problem becomes determined to
solve for the unknowns, and produce HR image. Further, these
set of approaches are numerically limited to smaller factors [11].
Additionally, the requirement of large number of images became
hindrance for such approaches. Hence, the focus of research has
shifted towards single image SR approaches, where the requirement
of multiple LR images of the target scene is replaced with the
requirement of some HR example images [10]. The assumption
behind such approaches is that the missing HF information of LR
images can be imported from HR example set. However, processing
multiple HR images increases the memory requirement. Thus, patch
based processing has been adopted for SR [9, 41, 45, 47].

Absence of patches similar to the target patch in the database
increases the complexity of the problem. This scenario can be ad-
dressed by including prior information about the image. Natural im-
age statistics such as smoothness prior has often been used in terms
of Tikhonov, total variation, Markov random field, etc. [16, 31, 48].
Among the other priors, non-local similarity and sparsity inducing
norms are the notable ones. Non-local similarity explores the patch
similarity that are not constrained to a local region [9, 11, 24]. Spar-
sity inducing norm has been employed in SR approaches on the
basis that natural image is sparse in some domain [9, 27, 46, 47].
While using sparsity inducing norm, the target patch is generally
represented by linear combination of few patches from the data-
base of patches, represented as columns of an over-complete matrix,

known as dictionary [2, 26, 29]. Dictionary can have analytic form
such as DCT or it can be learned from example patches [2, 29, 36, 45].
Sparsity prior has often been combined with others such as non-
local self similarity to improve SR performance [8]. Most of these
approaches will not work in the scenario when example images are
unavailable. Moreover, these approaches do not consider channel
varying noise in the models.

Surge of recent deep learning techniques has inspired researchers
to employ deep convolutional neural network (CNN) for SR [6, 7].
Since then, different CNN architectures have been employed for SR.
Residual network [13] has been used to create deeper framework
in conjunction with skip connection and recursive convolution to
improve the results [18, 19]. Nested skip connection has also been
engaged with encoder-decoder architecture to improve conver-
gence [30]. Most of these approaches appraise bicubic interpolated
version of the LR image as input to the network [6, 18, 19]. Pro-
cessing a higher dimensional image for very large number of levels
requires higher computational resources. In order to avoid such
condition, up-sampling module has been appended at the end of
the network [7, 21, 37]. However, these approaches can not deal
with different scales [18]. VDSR [18] has capability of training joint
SR for different scales, and produce superior results than scale-
specific network with the cost of higher computational burden.
This requirement has been mitigated by using ResNet architecture
in the SRResNet model [21]. The ResNet architecture was origi-
nally proposed for different higher level vision tasks [13]. Hence,
direct application of it to SR may not be optimal. An optimized and
simplified version of the SRResNet has been proposed via EDSR to
improve the results [22]. To accommodate multiple scales, MDSR
proposed a multi-scale architecture that shares the set of parame-
ters across different scales [22]. The performance of all these deep
learning based approaches depends on availability of large number
of example images. Moreover, the training-testing condition for
these methods needs to be same.

In order to alleviate such hard restrictions, small image-specific
CNN has been developed based on patch recurrences in the input
image [38]. The patch recurrence concept has also been explored by
some traditional approaches [11, 14, 25, 39, 42, 44]. These methods
super-resolve the given LR image based on the presumption that
the HF information can be found out from similar patches across
different scales. However, most of these techniques ignore the cor-
relation among the color channels. Further, the presence of noise
in the LR image has often been neglected in the model.

The task of SR from a noisy LR image has been performed by a
few techniques [27, 28, 39]. The approach [39] poses the problem
as a combination of denoising and SR. The noisy LR image is super
resolved directly to produce an HR version, which is conjugated
with another HR image, derived from denoised LR image in order
to produce the final HR result. The motivation behind the method is
that the denoised LR image often lacks the HF information, which
can be imported from the super-resolved noisy HR image. The main
drawback of it is that the performance depends on the denoising
algorithm. This issue has been taken care by implicit denoising
while performing SR by the approach [27]. This method estimates
few parameters that are related to the noise statistics and are used
in considering non-local mean or detail component for further pro-
cessing. However, the approach [27] considers only the luminance
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component for SR. Thus, it can not take care of the channel varying
noise. This holds true for the approach [28], which applies nuclear
norm minimization on luminance channel. In contrast, we jointly
super resolve the color channels by considering different weights
for different channels. Moreover, we consider weighted nuclear
norm regularization to prioritize the significant singular values.
Further, the solution is regularized by including a constraint that
includes multi-scale image details through projection onto PCA
basis.

The contributions of the proposed approach are summarized as
follows:

• We propose to super-resolve color images in real noise by
considering color channels jointly.

• Different weights for different channels are estimated from
their noise statistics, which are derived blindly from the
input LR image. The estimated weights are used in the data
cost.

• Nuclear normminimization is employedwith adaptiveweights,
which are assigned based on significance of singular values.
The weighted nuclear norm forms a regularization term in
our cost.

• Multi-scale image details are augmented in the model as
another regularization term based on PCA and the combined
objective function is optimized using ADMM algorithm.

3 PROPOSED APPROACH
We analyze noise statistics for color images in real noise to demon-
strate it’s channel varying nature. This behavior is included in con-
structing the data cost function, which is assisted with weighted
nuclear norm and PCA basis based regularization term to model
the problem. The entire cost function is optimized using alternating
direction method of multipliers [3].

3.1 Inter-Channel Noise Statistics
In order to check the behavior of noise across color channels, we
estimate the noise variances for real images using the technique [4].
The real images are obtained from [20]. The noise variances are
shown in bar plots for different real examples in Fig. 1. Note that the
noise variances are not same across channels. Further, the variations
across channels are also not uniform. Hence, depending on scenes,
the red, green & blue channels will be affected differently. Thus,
processing only luminance component of the image or applying
SR on every channel uniformly may not be suitable for all images.
This urges for an SR approach that takes care of the issue, which
we are going to discuss next.

3.2 Model Formulation
For a color image, the eq. (1) can be re-written as

yl = DHxl + nl , l ∈ {r ,д,b}. (2)

The objective is to recover xl for each of the red, green & blue
channels, represented by r ,д,b. In order to proceed, the LR color
image is up-sampled by off-the-shelf interpolation technique to
achieve an initial HR approximation, i.e., x̂l = (yl ) ↑d . Patches
are extracted in overlapping manner from the initial version as
xi ,l = Pi x̂l , where Pi extracts ith patch xi ,l ∈ ℜm from lth color

channel. Now, the patches from each of the color channels are
stacked together to form a vector xi = [xi ,r ; xi ,д ; xi ,b ] ∈ ℜ3m .
For each of these patches, we search for similarity in the image in
terms of l2 distance, and select s similar patches. These are kept in
column-wise mode to form a matrix Xi ∈ ℜ3m×s .

In order to remove the bias of DC value, we extract detail com-
ponent by subtracting a weighted mean from the matrix Xi as

Xi ,r = Xi − Xi ,m, (3)

where, Xi ,m is the weighted mean of similar patches, and is esti-
mated as

Xi ,m = R


s∑
j=1

{
1
z
exp

(
−
||xi − xj | |22

h

)}
xj

 . (4)

R repeats the vector to form a matrix of size equal to Xi . z is
normalizing constant, and h controls the decay of the exponential.

Consider 𝒳i is the clean HR counterpart of Xi . Since, 𝒳i will
have similar clean patches, the rank of it will be lesser. It follows
that the rank of𝒳i ,r will also be lower. By defining rank as number
of non-zero singular values i.e., K

(
𝒳i ,r

)
=

∑
k | |σk

(
𝒳i ,r

)
| |0, we

can minimize the rank along with a data cost that imposes the data
continuity as

�̂�i ,r = argmin
𝒳i ,r

{
| |Xi ,r −𝒳i ,r | |

2
F +K

(
𝒳i ,r

)}
. (5)

Solving above equation involves l0 norm minimization, which is
NP-hard in nature. Thus rank is often relaxed as

∑
k | |σk

(
𝒳i ,r

)
| |1,

which is also known as nuclear norm | |𝒳i ,r | |∗ [12]. Hence, eq. (5)
can be re-written as

�̂�i ,r = argmin
𝒳i ,r

{
| |Xi ,r −𝒳i ,r | |

2
F + | |𝒳i ,r | |∗

}
. (6)

In order to tackle the channel varying noise, we include a weight
matrix Λ in the data term. Further, above equation minimizes all
the singular values uniformly, irrespective of their significance.
Considering the importance of different singular values, we assign
weights to minimize them differently [12]. The weighted nuclear
norm can be written as

| |𝒳i ,r | |w ,∗ =
∑
k

| |wkσk
(
𝒳i ,r

)
| |1 =

∑
k

wkσk
(
𝒳i ,r

)
(7)

Thus, with the weights, the eq. (6) can be written as

�̂�i ,r = argmin
𝒳i ,r

{
| |ΛXi ,r − Λ𝒳i ,r | |

2
F + | |𝒳i ,r | |w ,∗

}
. (8)

3.2.1 The Weight Λ: The weights Λ can be estimated using a
MAP framework, where we want to maximize the probability of
𝒳i ,r , given Xi ,r andw .

�̂�i ,r = argmax
𝒳i ,r

{
ln P

(
𝒳i ,r |Xi ,r ,w

)}
= argmin

𝒳i ,r

{
− ln P

(
𝒳i ,r |Xi ,r ,w

)}
= argmin

𝒳i ,r

{
− ln P

(
Xi ,r |𝒳i ,r

)
− ln P

(
𝒳i ,r |w

)}
(9)

Here, the term P
(
Xi ,r |𝒳i ,r

)
is approximated by the noise statistics.

According to our observation from Fig. 1, we can assume that noise
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Figure 1: Noise statistics across color channels for the images [20]: (a) Palace; (b) Room; (c) Singer; (d) Woman. Corresponding
variances of noise for different channels are shown in (e-h), respectively.

is independent and identically distributed across channel. Further,
the distribution can be assumed to be Gaussian [32]. Hence,

P
(
Xi ,r |𝒳i ,r

)
=

∏
l

1(
2πσ 2

l

) 3m
2

exp

(
−

1
2σ 2

l

| |Xi ,r ,l −𝒳i ,r ,l | |
2
F

)
. (10)

The weighted nuclear norm is acted on 𝒳i ,r . Hence, the term
P

(
𝒳i ,r |w

)
will be proportional to exp

(
− 1
2 | |𝒳i ,r | |w ,∗

)
. Putting

these two terms in eq. (9), we get

�̂�i ,r = argmin
𝒳i ,r

∑
l

1
σ 2
l

| |Xi ,r ,l −𝒳i ,r ,l | |
2
F + | |𝒳i ,r | |w ,∗. (11)

This can be further written as

�̂�i ,r = argmin
𝒳i ,r

∑
l

| |
1
σl

Xi ,r ,l −
1
σl

𝒳i ,r ,l | |
2
F + | |𝒳i ,r | |w ,∗. (12)

Comparing, eq. (12) with eq. (8), we can write the weight matrix
Λ ∈ ℜ3m×3m as a diagonal matrix, whose non-zero entries are
1/σl .

3.2.2 The Weightw : The weightw is assigned according to the
significance of the singular values. For natural images, the larger
singular values represents more important information than the
smaller ones. Hence, the larger singular values should be penalized
lesser than the smaller singular values. Thus, one natural choice is
to take inverse of the singular values in some proportion. Here, we
choosew as [12]

wk =
C

σk
(
𝒳i ,r

)
+ ϵ
, (13)

where σk
(
𝒳i ,r

)
is the kth singular value of 𝒳i ,r , C and ϵ are

constants.

3.3 Employing Multi-Scale Image Details
Here, we bring out the multi-scale image details in form of PCA ba-
sis. For a target patch xi ∈ ℜ3m , we find its similar patches across
scales. The similar patches extracted from different up-scaled ver-
sions as well as down-scaled versions can provide the required
patch details to generate HR patch. This is because we perceive
a coarser view of a scene from a long distance, and details of the
scene reveal gradually when we approach towards it. These similar
patches are gathered together in a column-wise manner to gener-
ate a matrix Ti , which is mean subtracted to unveil the details of
different scales. The mean subtracted matrix Ti ,r is then used to
find eigenvectors, which are further arranged in descending order
corresponding to eigenvalues and placed in a matrix Bi , which
forms the required basis.

The information, embedded in basis Bi is included into our for-
mulation in form of a regularization term. Precisely, we projectXi ,r
onto Bi , and revert it back via soft-thresholding and multiplication
with basis. This should be closer to the the matrix 𝒳i ,r . Thus, the
eq. (12) is modified with the new term as

�̂�i ,r = argmin
𝒳i ,r

{
| |Λ

(
Xi ,r −𝒳i ,r

)
| |2F + | |𝒳i ,r | |w ,∗

+| |𝒳i ,r − Bi𝒮
(
BTi Xi ,r

)
α
| |2F

}
, (14)

where, 𝒮 (·)α is a soft thresholding operator that shrinks the larger
projection coefficients towards the center, and smaller coefficients
to zero based on threshold α .

3.4 Optimization
Unfortunately, the problem of eq. (14) does not have a closed form
solution because of the weight matrix Λ and the soft thresholding
operator 𝒮 . In order to solve the equation, we introduce an aug-
mented variable ℱ , which is used to represent the equation as a
linear equality-constrained problem using variable splittingmethod.
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To simplify expressions, in the optimization steps, we remove the
subscripts of the variables. For example,𝒳i ,r will be represented
as𝒳 . Hence, the cost can be written as

min
𝒳 ,ℱ

| |Λ (X −𝒳 ) | |2F + | |𝒳 − B𝒮
(
BTX

)
α
| |2F + | |ℱ | |w ,∗

s .t . 𝒳 = ℱ . (15)

The eq. (15) is separable, hence it can be solved by alternating direc-
tion method of multipliers (ADMM) [3]. The augmented Lagrangian
function becomes

L (𝒳 ,ℱ, Γ, ρ) = | |Λ (X −𝒳 ) | |2F + | |𝒳 − B𝒮
(
BTX

)
α
| |2F

+| |ℱ | |w ,∗ + ⟨Γ,𝒳 −ℱ⟩ +
ρ

2
| |𝒳 −ℱ | |2F , (16)

where Γ is the augmented Lagrangian multiplier, and ρ is the
penalty parameter. We denote𝒳k ,ℱk and Γk are the optimization
variables and Lagrangian multiplier at kth iteration. Initialization of
the variables are done by assigning zero matrices to𝒳0,ℱ0 and Γ0.
The penalty parameter is assigned a small positive value. By taking
derivative of the augmented Lagrangian function with respect to
𝒳 & ℱ , and equating it to zero, we can update the variables in
following manner:

(1) Update 𝒳 :

𝒳k+1 = argmin
𝒳

| |Λ (X −𝒳 ) | |2F + | |𝒳 − B𝒮
(
BTX

)
α
| |2F

+
ρk
2
| |𝒳 −ℱk + ρ

−1
k Γk | |

2
F . (17)

This has a closed form solution:

𝒳k+1 =
(
ΛTΛ + I +

ρk
2
I
)−1 (

ΛTΛX + B𝒮
(
BTX

)
α

+
ρk
2
ℱk − Γk

)
. (18)

The soft-thresholding operator 𝒮 is defined as

𝒮
(
BTX

)
α
= siдn

(
BTX

) (
|BTX| − α

)
+
, (19)

where
(
|BTX| − α

)
+
is established as(

|BTX| − α
)
+
=

{
0 if |BTX| < α

|BTX| − α if |BTX| > α
(20)

(2) Update ℱ :

ℱk+1 = argmin
ℱ

ρk
2
| |ℱ −

(
𝒳k+1 + ρ

−1
k Γk

)
| |2F + | |ℱ | |w ,∗ (21)

Let SVD of
(
𝒳k+1 + ρ

−1
k Γk

)
= UkΣkVTk . According to eq. (13),

the weights are inversely proportional to the singular val-
ues. It follows that 0 ≤ w1 ≤ w2 · · · ≤ wn . The work [12]
suggests that the above form of equation has a closed form
solution for non-decreasing weights and the solution is

ℱk+1 = Uk𝒮 (Σk )wk
2

VTk . (22)

(3) Update Γ:

Γk+1 = Γk + ρk (𝒳k+1 −ℱk+1) (23)

(4) Update ρ:

ρk+1 = η ∗ ρk where η > 1 (24)

These steps are repeated until the algorithm converges or reaches
the maximum number of iterations.

3.5 Obtaining the Final Result
The solution𝒳i ,r is added with Xi ,m of eq. (4) to get the colored
version X̂i . Columns of X̂i contains the super-resolved patches
similar to xi . In this manner, all the patches are super-resolved
(x̂i ,l ), and are stitched together to form a full image ˆ̃xl . Extracted
patches from the full image should be consistent with the restored
patches x̂i ,l . Further, the recovered HR image should be harmonious
with the input image, if down-sampled in same way. We need to get
solution, which follows above two constraints, and can be achieved
by solving

ˆ̂xl = argmin
ˆ̃xl

{∑
i

| |Pi ˆ̃xl − x̂i ,l | |
2
2 + β | |yl − DH ˆ̃xl | |22

}
. (25)

The first term recovers the entire image for each color channel from
the recovered patches, and the second term is data continuity term.
A closed form solution can be derived from eq. (25)

ˆ̂xl =

(∑
i
PTi Pi + β HTDTDH

)−1 (∑
i
PTi x̂i ,l + β HTDT yl

)
. (26)

The recovered ˆ̂xl for each color channel can be spliced together to
produce the final color image.

4 EXPERIMENTAL RESULTS
We evaluate the proposed approach by considering real images as
provided by [20, 32]. The dataset [32] is created by capturing im-
ages of 11 static scenes under controlled indoor environment using
different cameras with different settings. However, a camera and its
settings are kept fixed for shooting a particular scene. In this man-
ner, 500 images per scene are captured. The mean of these images
can serve as ground truth for each of the scenes and can be used
for computing quantitative measurements such as PSNR, and SSIM.
Originally, dimensions of the captured images are quite large (of
the order 7000× 5000). However, 15 cropped versions of the images
with dimension 512×512 are provided by the authors of [32]. These
15 smaller images are used in our approach for experimentation. In
contrast, the dataset [20] is constructed in uncontrolled environ-
ment. A set of 20 images of different dimensions are considered
from the dataset [20] for experimental purpose. Absence of ground
truths in the dataset restricts us to do only visual comparison.

The noisy images are down-sampled by factor 3 using MATLAB
command imresize with bicubic interpolation to generate LR im-
ages. The noise statistics for each color channels are estimated from
the LR images using [4]. The LR image is then up-scaled using bicu-
bic interpolation technique to generate an initial approximation
of HR image. Patches of size 6 × 6 are extracted from the initial
HR image. For each patch, we search for its similarity in 25 × 25
neighborhood and consider 20 most similar patches. To accommo-
date image details in the model, we sample the initial HR image
into 6 different levels by factors (0.8)i , where i = 1, 2, 3, 4, 5, 6. The
initial value of ρ is set to be 1. The α for soft-thresholding operator
is chosen as 0.8. The maximum iterations are limited to 360. The
computational complexity of this approach is O(m3L) , wherem is
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the size of a patch, and L is the number of patches. We have com-
pared our results with various approaches including conventional
approaches [9, 27, 28, 34, 41, 45, 47] as well as deep learning based
approaches[6, 22, 38].

4.1 Experiments Using Dataset [32]
The quantitative measures such as PSNR and SSIM1 for the results
on 15 images of the dataset [32] are depicted in Table 1 along with
the results of existing approaches. Among these approaches, RP[45],
ASDS[9], SU[47], SRCNN[6], Aplus[41], SPSR[34], EDSR[22] de-
pends on example image patches. However, NASR[27], NNSR[28],
and ZSSR[38] do not require example image patches. It can be ob-
served from the table that for most of the cases, we are able to
produce the best results, as denoted by bold fonts. Further, the
superiority of our approach can be verified visually through an
example, as shown in Fig.2. From first glance, the results appear
to be more or less similar. However, difference can be found in
the zoomed in part of the image. The example image based ap-
proaches [6, 9, 22, 34, 41, 47] are not able to reduce the noisy arti-
facts much as they have not seen images with real noise and their
ground truths in the training set. Further, these approaches do not
model the noise with its channel varying characteristic. Though,
NASR [27] can take care of the noise but the channel varying nature
of it restricts the method from performing well, as can be observed
in (f). On the other side, ZSSR [38] is a deep learning based ap-
proach, which over-fits on the given LR image to produce an SR
result, which is still infected by noise. Whereas, we are able to re-
duce the noisy artifacts due to the elegant combination of weighted
data cost, weighted nuclear norm and multi-scale image details.

4.2 Experiments Using Dataset [20]
This dataset does not contain any ground truth of the noisy obser-
vations. Hence, the computation of the metrics PSNR & SSIM are
not possible for the dataset. Here, we show the results of different
approaches along with the results of our method in Fig. 3. One
can observe that existing approaches including the deep learning
ones are not able to reduce the noisy artifacts. Further, the edges of
some of their results are smeared. However, our approach is able
to suppress the effect of noise without smearing the edges. Similar
improvement can be observed in Fig. 4, where we have considered
a scene, captured in dim lighting condition. The image is contami-
nated with real noise due to higher ISO. However, our approach is
able to produce better results as can be seen in the zoomed-in parts.
This improvement is due to the cultivated combination of different
regularization terms along with weighted data cost.

4.3 Comparisons with Denoising+SR
Approaches

Here we compare the results of our approach with the existing
SR approaches, where the LR images are first denoised as a pre-
processing step of SR. CBM3D [5] has been considered for the
denoising purpose. For comparisons, we consider a few SR ap-
proaches that cover different types of methodologies including a
sparse representation based [34], regression based [41], and deep

1PSNR values are positioned above the SSIM values in each cell of the table.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 2: Visual results on 1st scene of Nikon D800 (ISO
= 3200) from Table 1. (a)-(i) depict the results of ASDS[9],
SU[47], SRCNN[6], A+[41], SPSR[34], NASR[27], EDSR[22],
ZSSR[38], & our result, respectively; (j) represents the
Ground truth.
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Table 1: Results of SR on dataset [32](↑ 3)
Camera RP[45] ASDS[9] SU[47] SRCN[6] A+[41] SPSR[34] NASR[27] EDSR[22] NNSR[28] ZSSR[38] ours

40.35 40.70 41.15 40.81 41.12 41.38 40.91 41.40 40.92 40.52 41.65
0.9684 0.9644 0.9694 0.9655 0.9676 0.9720 0.9726 0.9691 0.9727 0.9654 0.9741

Nikon D800 37.05 37.22 37.78 38.13 37.40 35.57 37.95 37.98 39.46 36.82 38.78
ISO = 1600 0.9761 0.9640 0.9694 0.9658 0.9652 0.9678 0.9754 0.9677 0.9810 0.9614 0.9785

40.68 40.20 40.64 40.25 40.59 40.88 41.06 40.74 41.47 39.36 41.49
0.9619 0.9506 0.9574 0.9520 0.9551 0.9616 0.9641 0.9560 0.9651 0.9468 0.9657
40.95 39.43 39.96 39.46 39.73 40.53 40.60 39.78 41.55 39.66 41.75
0.9760 0.9468 0.9579 0.9487 0.9518 0.9642 0.9660 0.9511 0.9700 0.9472 0.9752

Nikon D800 39.83 40.17 40.61 40.29 40.42 40.89 40.42 40.66 37.38 39.67 41.39
ISO = 3200 0.9676 0.9627 0.9683 0.9638 0.9653 0.9710 0.9649 0.9664 0.9589 0.9627 0.9747

40.62 39.27 40.07 39.35 39.53 40.86 40.92 39.53 42.13 39.25 42.53
0.9320 0.9255 0.9416 0.9278 0.9309 0.9529 0.9540 0.9308 0.9683 0.9276 0.9700
35.81 36.85 36.46 38.43 36.76 37.39 38.22 39.64 38.40 35.74 39.50
0.9494 0.9620 0.9654 0.9667 0.9684 0.9724 0.9702 0.9753 0.9753 0.9590 0.9807

Cannon 5D 35.78 36.38 36.26 36.57 36.55 36.57 36.87 37.41 35.38 35.42 37.11
ISO = 3200 0.9408 0.9411 0.9433 0.9424 0.9440 0.9485 0.9464 0.9532 0.9417 0.9317 0.9546

35.93 37.84 37.61 37.09 37.68 37.32 38.46 38.10 38.17 36.48 37.92
0.9588 0.9648 0.9660 0.9618 0.9648 0.9672 0.9716 0.9676 0.9700 0.9575 0.9687
36.47 37.54 37.49 37.16 37.41 37.58 38.25 37.75 37.80 37.93 37.65
0.9599 0.9648 0.9663 0.9631 0.9643 0.9687 0.9718 0.9684 0.9688 0.9628 0.9687

Nikon D600 37.37 38.23 38.03 38.01 38.11 38.10 39.47 38.62 39.24 37.67 39.00
ISO = 3200 0.9679 0.9644 0.9682 0.9644 0.9660 0.9709 0.9752 0.9683 0.9756 0.9610 0.9750

40.96 39.88 40.80 40.29 40.53 40.78 39.08 40.66 39.56 40.36 41.27
0.9841 0.9656 0.9735 0.9675 0.9691 0.9771 0.9754 0.9698 0.9810 0.9653 0.9841
34.14 33.78 33.97 34.03 33.87 34.10 35.79 34.93 36.15 33.74 35.49
0.9184 0.8682 0.8881 0.8733 0.8764 0.8970 0.9153 0.8832 0.9281 0.8691 0.9226

Nikon D800 34.79 35.05 35.21 35.08 35.24 35.39 35.57 35.49 35.82 35.07 36.00
ISO = 6400 0.9416 0.9238 0.9334 0.9264 0.9285 0.9383 0.9455 0.9299 0.9403 0.9230 0.9500

35.31 34.91 35.40 35.02 35.21 35.51 35.28 35.39 34.67 34.12 36.21
0.9219 0.9023 0.9167 0.9059 0.9087 0.9192 0.9093 0.9110 0.9136 0.8926 0.9330

Average 37.74 37.86 38.10 38.00 38.08 38.19 38.59 38.54 38.54 37.45 39.18
0.9550 0.9447 0.9523 0.9463 0.9484 0.9566 0.9585 0.9512 0.9618 0.9422 0.9650

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 3: Visual results on Froд from the dataset [20]. (a) shows the LR image, (b)-(j) depict the results of ASDS[9], SU[47],
SRCNN[6], A+[41], SPSR[34], NASR[27], EDSR[22], ZSSR[38], and our result, respectively.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)
Figure 4: Visual results on Girls from the dataset [20]. (a) shows the LR image, (b)-(j) depict the results of ASDS[9], SU[47],
SRCNN[6], A+[41], SPSR[34], NASR[27], EDSR[22], ZSSR[38], and our result, respectively.

Table 2: Results of Denoising+SR on dataset [32](↑ 3)
Average CBM3D[5]+ CBM3D[5]+ CBM3D[5]+
Metrics A+[41] SPSR[34] ZSSR[38] ours
PSNR 35.44 35.35 38.62 39.18
SSIM 0.9509 0.9479 0.9643 0.9650

learning based [38]. The average PSNR & SSIM metrics for these ap-
proaches alongwith ours are tabulated in Table 2 for the dataset [32].
Note that for our approach, we use the original noisy LR images
as input. One can observe that the proposed approach is able to
out-perform these denoising [5]+SR approaches. The reason be-
ing that the denoising approach CBM3D consider processing each
channel separately by considering uniform noise statistic across

channels, which is calculated as σ =
√(

σ 2
r + σ

2
b + σ

2
b

)
/3. Here σr ,

σд , and σb are estimated using[4]. As a consequence, some of the
channels may become over-smoothed and some becomes under-
smoothed. Hence, the final results may pose some artifacts. The
example based approaches [34, 41] are not trained to suppress those,
hence their performance degrades. However, the ZSSR [38] method
explores the patch recurrent concept which helps in reducing the
artifacts up to some extent. Thus, the performance of ZSSR has
improved. However, the improvement has come by using denoising
and SR approaches sequentially. On contrary, our method considers
channel-varying noise statistic along with weighted nuclear norm
and multi-level-details in a single framework to produce superior
results.

5 CONCLUSION
We proposed to super-resolve an image in real noise by alleviating
the channel varying noise of it. Weights, adaptive to the noise

statistics were assigned to the data cost, which was augmented by
two regularization terms. One of the terms maintains the low-rank
property of similar patches byweighted nuclear normminimization,
where weight carries the significance of singular values. Multi-scale
image details were embedded into the model through the second
regularization term, which was constructed via projection onto
PCA basis. The combined objective function was minimized using
ADMM-based optimization algorithm, which leads to suppression
of noise while bringing out image details. The results demonstrated
the super-resolving capability of our approach in real noise.
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